<p>The LisH motif is found in a large number of eukaryotic proteins, from metazoa, fungi and plants that have a wide range of functions. The recently solved structure of the LisH domain in the N-terminal region of LIS1 depicted it as a novel dimerization motif, and that other structural elements are likely to play an important role in dimerisation [<cite idref="PUB00031906"/>, <cite idref="PUB00035648"/>, <cite idref="PUB00035649"/>]. </p><p> A sequence motif, LisH, has been identified in the products of genes mutated in Miller-Dieker lissencephaly, Treacher Collins, oral-facial-digital type 1 and contiguous syndrome ocular albinism with late onset sensorineural deafness syndromes. An additional homologous motif was detected in a gene product fused to the fibroblast growth factor receptor type 1 in patients with an atypical stem cell myeloproliferative disorder. In total, over 100 eukaryotic intracellular proteins are shown to possess a LIS1 homology (LisH) motif, including several katanin p60 subunits, muskelin, tonneau, LEUNIG, Nopp140, aimless and numerous WD repeat-containing beta-propeller proteins [<cite idref="PUB00007968"/>].</p> <p> It is suggested that LisH motifs contribute to the regulation of microtubule dynamics, either by mediating dimerization, or else by binding cytoplasmic dynein heavy chain or microtubules directly. The predicted secondary structure of LisH motifs, and their occurrence in homologues of Gbeta beta-propeller subunits, suggests that they are analogues of Ggamma subunits, and might associate with the periphery of beta-propeller domains.</p> LisH dimerisation motif